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Perturbative Solution of the Einstein Constraints with Spin
and Momentum Far Away From a Binary Source in the
Bowen-York Formalism

Emel Altas, Emine Ertugrul, and Bayram Tekin*

The momentum and Hamiltonian constraints of vacuum Einstein equations,
within the Bowen-York formalism, for two interacting black holes in close
separation, with anti-parallel spins and anti-parallel linear momenta is
studied. An analytical solution using perturbation theory is given. The location
and the shape of the apparent horizon which generically depend on all the
parameters, angles, and the separation between the black holes are also
computed. The solution only works for distances far away from the black
holes. To gain more insight close into the black holes, one has to go to the
higher orders in perturbation theory, which is a rather cumbersome process.
But the solution presented here can be of some use for numerical
computations as the latter should match our result for the described problem.

1. Introduction

The days are long gone when black holes are merely a theoretical
curiosity that necessarily show up in General Relativity but are
thought, somehow, would not appear as final states of gravita-
tional collapse. They are now in the domain of observation either
as sources of gravitational waves[1,2] due to their merger, about
one hundred of suchmergers have been detected; or as sources of
strong gravitational lensing which yields a characteristic shadow
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in the observer’s screen granted that
black hole has a non-vacuum environ-
ment such as its accretion disk or pho-
ton sphere. This is the case for the su-
permassive black holes at the center of
galaxies, two of which have been directly
observed.[3,4] The second one being the
image of the supermassive black hole in
our own galaxy.
In the LIGO/VIRGO type detectors,

two observables are recorded: these are
the time-dependent gravitational wave
frequency 𝜈(t), and the strain caused by
the wave h(t). From these two data, us-
ing General Relativity, one can derive
all the information, except its exact lo-
cation in the sky, regarding the source

of the transient gravitational wave. So to be able to interpret
the observed data, General relativity is still, in some sense, our
greatest tool. So far, the theory is consistent with all the ob-
servations. Incidentally, with a slight modification, Newtonian
physics[5,6] also helps us understand the basic aspects of the black
hole merger physics and reproduce the properties, such as the
masses of individual black holes and the power radiated during
the merger.[7] To be able to understand the profile of the gravita-
tional wave generated during the inspiral, merger and the ring-
down phases, one necessarily resorts to numerical relativity, es-
pecially in the merger phase for the largest strain and the largest
wave frequency is generated. This was finally achieved in ref. [8]
and for a nice brief account of this, see ref. [9]. Here we have
nothing more to add to this well-tested, highly successful numer-
ical evolution scheme of Einstein’s evolution equations. Instead
we shall concentrate on not the evolution equations, but the con-
straint equations; and try to understand the binary black hole in
a close orbit as an initial value problem. We shall discuss the im-
portance of the Einstein constraint equations in the next section,
but let us note that the constraints not only determine the possi-
ble initial data, but they also determine the time evolution of the
system. But the constraints are extremely difficult to solve.
Recently,[10] we studied the constraint equations of General

Relativity in the Bowen-York[11,12] formalism and constructed ap-
proximate initial data (for the vacuum case) for a single black hole
with spin and linear momentum pointing in arbitrary directions.
Bowen-York approach in solving the Einstein constraint equa-
tions starts with a conformally flat 3-metric and hence the single
gravitating object described in this formalism typically has junk
gravitational radiation; and before it settles to a single black hole,

Fortschr. Phys. 2023, 71, 2300080 2300080 (1 of 9) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.fp-journal.org
mailto:btekin@metu.edu.tr
https://doi.org/10.1002/prop.202300080
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fprop.202300080&domain=pdf&date_stamp=2023-06-20


www.advancedsciencenews.com www.fp-journal.org

Figure 1. Positions of two gravitating black holes: pi are the linear momenta pointing in the±ŷ direction, ji are the spins in the±x̂ direction; while ci show
the locations of the black holes from the center of the coordinates. The linear momenta are anti-parallel to each other and the spins are anti-parallel to
each other and lie along the axis connecting the black holes. The linear momenta and spins are perpendicular to each other. This configuration is chosen
to mimic the black hole merger event.

it will emit this radiation. Furthermore, if it is spinning, in the
final stationary state, it cannot be represented in the conformal
Bowen-York form.[13,14] It would be pedantic to stress the impor-
tance of understanding the merger of black holes as we are liv-
ing in a time, observation of not only black hole collisions but
also other compact objects is in a thrilling state since the first
announcement.[1]

In this work, we extend our earlier discussion to binary black
holes, still in the Bowen-York formalism, orbiting around each
other with generically different but anti-parallel spins and linear
momenta. We assume that the spacetime is asymptotically flat
and globally hyperbolic with conformally flat hypersurfaces as in
ref. [11], which makes the momentum constraint easily solvable.
But of course the Hamiltonian constraint is a nonlinear partial
differential equation which ultimately requires numerical tech-
niques to be solved. Here, instead, we use perturbation theory,
assuming small spin and small linear momenta and separation
(compared to masses and the distances we are looking at) to ob-
tain analytical formulas for the conformal factor of the spatial
metric. We also compute the shape and location of the apparent
horizon. Our perturbative approach fails for distances close to the
black holes.
The layout of the paper is as follows: in Section II we de-

scribe the constraint equations and the initial data for two black
holes by solving the momentum constraint; and find the form
of the Hamiltonian constraint that defines our system. That sec-
tion should be considered as background material and the only
original expression is given as (7). Figure 1 summarizes our as-
sumptions. We also compute the Arnowitt-Deser-Misner (ADM)
momentum and spin from the extrinsic curvature. For these two
quantities, only the asymptotic form of the conformal factor is
needed, and hence the computation can be carried out before
solving theHamiltonian constraint, with the knowledge of the ex-

trinsic curvature. In Section III, we find the approximate solution
to the Hamiltonian constraint and in Section IV we compute the
shape of the apparent horizon. We also compute the irreducible
mass, the area of the apparent horizon and the ADM mass of
the system.

2. The Einstein Constraint Equations and the Initial
Data

Let us consider a spatial three-dimensional hypersurface Σ em-
bedded in a globally hyperbolic, asymptotically flat spacetime;
then from Einstein’s equations in a vacuum, one obtains the fol-
lowing constraints (see for example[15])

−ΣR − K2 + KijK
ij = 0,

2DkK
k
i − 2DiK = 0, (1)

where Kij is the extrinsic curvature of the hypersurface and
ΣR

is the scalar curvature constructed from 𝛾ij, the metric on Σ; and
the trace of the extrinsic curvature is K = 𝛾 ijKij. Here Di is the
covariant derivative compatible with 𝛾ij.
These constraint equations, together with the first order time

evolution equations, which we do not depict here explicitly, con-
stitute a dynamical system formulation of Einstein’s equations.
What is remarkably beautiful is that the linearization of the con-
straints (1) appear in the time-evolution equations as was given
by Fischer and Marsden[16]

d
dt

(
𝛾

𝜋

)
= J◦DΦ∗(𝛾 ,𝜋)( ), (2)
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where the J matrix reads

J =
(
0 1
−1 0

)
. (3)

Here the canonical momentum, a tensor density, 𝜋 is linearly re-
lated to the extrinsic curvature as 𝜋ij =

√
𝛾(Kij − 𝛾 ijK); and DΦ∗

is the formal adjoint of the linearized constraints and  is the
lapse-shift four vector. [Note that, thisD operator is not to be con-
fused with the covariant derivative Di.] We invite the interested
reader to follow a detailed derivation of these equations from
scratch in ref. [17] The up-shot here is, as mentioned in the intro-
duction part, that the constraints play a dual role: they determine
the initial data and the time evolution, hence they are extremely
important in General Relativity. This point of view was stressed
in ref. [15] But they are extremely hard to solve.
In seeking for solutions of the constraint equations, there are

various ways to adopt, some of which are well-described in ref.
[18] We shall follow the Bowen-York approach[11] and assume
“maximal slicing” (K = 0), and a conformally flat hypersurface:
𝛾ij = 𝜓4fij with f being the flat metric in some coordinates on the
hypersurface. Then the Einstein constraints (1) reduce to

D̂iD̂
i𝜓 = −1

8
𝜓−7K̂2

ij , (4)

D̂iK̂ij = 0, (5)

with D̂ifjk = 0 and Kij = 𝜓−2K̂ij. The momentum constraint (5)
nicely decouples and is amenable to exact analytical solution.
Note that here we are just summarizing what is already known
in this system, we do not claim to suggest a novel approach.
There could be many possible solutions to (5): following

Bowen-York ([11], we choose the following solution which can be
interpreted (as later justified from the total ADM linear and angu-
lar momentum computations) as two gravitating objects located
at different points in a vacuum as depicted in Figure 1. Note that
we shall take the linear momenta to be anti-parallel to describe
the circular motion about the center of mass; and the spins to
be anti-parallel and perpendicular to linear momenta as within
General Relativity spin-spin interactions lead to such a configura-
tion. At the perturbative level in General Relativity, the relevance
of this configuration can be seen easily.[19,20] Hence we take the
following form for the scaled extrinsic curvature

K̂ij =
3
2r21

(
p1in1j + p1jn1i + (n1in1j − fij) p1 ⋅ n1

)

+ 2
r31

((
j1 × n1

)
i
n1j +

(
j1 × n1

)
j
n1i

)

+ 3
2r22

(
p2in2j + p2jn2i + (n2in2j − fij) p2 ⋅ n2

)

+ 2
r32

((
j2 × n2

)
i
n2j +

(
j2 × n2

)
j
n2i

)
, (6)

where r1, r2 > 0 are distances from the centers of the black holes,
n1i and n2i are unit normals on spheres of radii r1, r2 > 0 . [For
a more general Bowen-York type solution than the one we have
taken here, see ref. [21]] To solve the Hamiltonian constraint

equation (4), we need to find the square of the extrinsic curva-
ture (6). Here we shall use the vector notation as it, otherwise,
gets cumbersome. The below formula is valid for generic angles,
not just for the particular case depicted in Figure 1.

K̂ijK̂
ij = 9

r41

(
p⃗21 + 2(p⃗1 ⋅ n⃗1)

2
)
+ 9
r42

(
p⃗22 + 2(p⃗2 ⋅ n⃗2)

2
)

+ 9
r21 r

2
2

(
n⃗1 ⋅ n⃗2

[
p⃗1 ⋅ p⃗2 +

(
p⃗1 ⋅ n⃗2

)(
p⃗2 ⋅ n⃗2

)

+
(
p⃗1 ⋅ n⃗1

)(
p⃗2 ⋅ n⃗1

)
+ 1
2

(
p⃗1 ⋅ n⃗1

)(
p⃗2 ⋅ n⃗2

)(
n⃗1 ⋅ n⃗2

)]
+
(
p⃗1 ⋅ n⃗2

)(
p⃗2 ⋅ n⃗1

)
− 3
2

(
p⃗1 ⋅ n⃗1

)(
p⃗2 ⋅ n⃗2

))
+18
r51

(⃗
j1 × n⃗1

)
⋅ p⃗1 +

18
r52

(⃗
j2 × n⃗2

)
⋅ p⃗2

+ 18
r31 r

2
2

(
n⃗1 ⋅ n⃗2

[
(⃗j1 × n⃗1) ⋅ p⃗2 + (⃗j1 × n⃗1) ⋅ n⃗2(p⃗2 ⋅ n⃗2)

]

+(⃗j1 × n⃗1) ⋅ n⃗2(p⃗2 ⋅ n⃗1)
)

+ 18
r21 r

3
2

(
n⃗1 ⋅ n⃗2

[
(⃗j2 × n⃗2) ⋅ p⃗1 + (⃗j2 × n⃗2) ⋅ n⃗1(p⃗1 ⋅ n⃗1)

]

+(⃗j2 × n⃗2) ⋅ n⃗1(p⃗1 ⋅ n⃗2)
)

+18
r61
(⃗j1 × n⃗1) ⋅ (⃗j1 × n⃗1) +

18
r62
(⃗j2 × n⃗2) ⋅ (⃗j2 × n⃗2)

+ 36
r31 r

3
2

[
(⃗j1 × n⃗1) ⋅ (⃗j2 × n⃗2)(n⃗1 ⋅ n⃗2)

+(⃗j1 × n⃗1) ⋅ n⃗2(⃗j2 × n⃗2) ⋅ n⃗1
]
. (7)

It should be clear, from this expression that even under simpli-
fying assumptions depicted in Figure 1, the Hamiltonian con-
straint, a nonlinear elliptic PDE, cannot be solved exactly. Hence,
we will resort to perturbation theory, but before embarking on
that computation, we can compute the ADM[22] linear momen-
tum and spin, using the exact extrinsic curvature, without any ap-
proximation. But of course we cannot compute the ADM energy.
This is because, assuming asymptotic flatness, for the conformal
factor, one has

𝜓(r) = 1 + E
2r

+ (1∕r2) as r → ∞, (8)

and defining the deviation from the flat space as hij := (𝜓4 − 1)𝛿ij,
the total momentum of the hypersurface Σ is determined only by
the re-scaled extrinsic curvature on a sphere at infinity:

Pi =
1
8𝜋 ∫S2∞

dS nj Kij =
1
8𝜋 ∫S2∞

dS nj K̂ij, (9)

which, for (6) yields Pi = p1i + p2i. The total conserved total angu-
lar momentum is similar:

Ji =
1
8𝜋
𝜀ijk ∫S2∞

dS nl x
jKkl = 1

8𝜋
𝜀ijk ∫S2∞

dS nl x
jK̂kl, (10)
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yielding Ji = j1i + j2i. On the other hand, to compute the ADM
mass, we will need the exact form of the (1∕r) term in the con-
formal factor since we have

EADM = 1
16𝜋 ∫S2∞

dS ni
(
𝜕jh

ij − 𝜕ih
j
j

)
= − 1

2𝜋 ∫S2∞

dS ni 𝜕i𝜓 , (11)

which we shall compute once we find the perturbative solution.

3. Approximate Solution of the Hamiltonian
Constraint for a Binary Black Hole

In order to solve (4) with (7) on the right-hand side, we expand
(7) up to and including (p2i , j2i , ci∕r) which amounts to a slow
moving, slow rotating binary and we are looking at regions away
from the system as c1 + c2 is the separation of black holes. After
a slightly lengthy computation, the Hamiltonian constraint (4) at
this order becomes

D̂iD̂
i𝜓 = 𝜓−7

[
9 p21
2 r4

(
1 + 2 sin2 𝜃 sin2 𝜙

+
12 c1
r

sin3 𝜃 sin2 𝜙 cos𝜙 +
4c1
r
sin 𝜃 cos𝜙

)

+
9 p22
2 r4

(
1 + 2 sin2 𝜃 sin2 𝜙

−
12 c2
r

sin3 𝜃 sin2 𝜙 cos𝜙 −
4c2
r
sin 𝜃 cos𝜙

)

−
9 p1p2
r4

(
1 + 2 sin2 𝜃 sin2 𝜙 −

6 (c1 − c2)
r

× sin3 𝜃 sin2 𝜙 cos𝜙 +
2(c1 − c2)

r
sin 𝜃 cos𝜙

)

+
18 j21
r6

(
sin2 𝜙 + cos2 𝜃 cos2 𝜙

+
8c1
r

(
sin 𝜃 sin2 𝜙 cos𝜙 + sin 𝜃 cos2 𝜃 cos3 𝜙

))

+
18 j22
r6

(
sin2 𝜙 + cos2 𝜃 cos2 𝜙

−
8c2
r

(
sin 𝜃 sin2 𝜙 cos𝜙 + sin 𝜃 cos2 𝜃 cos3 𝜙

))

−
36 j1j2
r6

(
sin2 𝜙 + cos2 𝜃 cos2 𝜙

+
4(c1 − c2)

r

(
sin 𝜃 sin2 𝜙 cos𝜙 + sin 𝜃 cos2 𝜃 cos3 𝜙

))

+
18p1j1
r5

(
cos 𝜃 +

6c1
r
sin 𝜃 cos 𝜃 cos𝜙

)

+
18p2j2
r5

(
cos 𝜃 −

6c2
r
sin 𝜃 cos 𝜃 cos𝜙

)

−
18p1j2
r5

(
cos 𝜃 +

2(c1 − 2c2)
r

sin 𝜃 cos 𝜃 cos𝜙
)

−
18p2j1
r5

(
cos 𝜃 +

2(2c1 − c2)
r

sin 𝜃 cos 𝜃 cos𝜙
)]
. (12)

Let us note that various sub-cases of this equation was studied
before in the literature. An approximate solution of the Hamil-
tonian constraint for a singleboosted slowly rotating gravitating
system was given in ref.[10]; and was elaborated in more de-
tail in ref. [23] In ref. [24] a single slowly spinning black hole
without linear momentum was solved in the leading order;
and in ref. [25] a slowly moving black hole without spin was
studied. So the case we study here generalizes these previous
works.
To be able to solve (12) even in perturbation theory, one needs

tomake some judicious choices, otherwise the partial differential
equations do not decouple. The formof the right-hand side of (12)
suggests a solution of the form

𝜓(r, 𝜃,𝜙) := 𝜓 (0) + p21 𝜓
p21 + p22 𝜓

p22 + p1p2 𝜓
p1p2

+j21 𝜓
j21 + j22 𝜓

j22 + j1j2 𝜓
j1 j2

+p1j1 𝜓p1 j1 + p2j2 𝜓
p2 j2 + p1j2 𝜓

p1 j2 + p2j1 𝜓
p2 j1 +⋯ ,

(13)

where all the functions on the right-hand side depend on all the
coordinates (r, 𝜃,𝜙). At the zeroth order, the right-hand side van-
ishes, and the equation to be solved is the usual flat space Laplace
equation

D̂iD̂
i𝜓 (0) = 0, (14)

which together with the boundary conditions[25] at spatial infinity
on Σ

lim
r→∞

𝜓(r) = 1, 𝜓(r) > 0, (15)

and near the origin, has a unique solution

lim
r→ 0

𝜓(r) = 𝜓 (0), (16)

where 𝜓 (0) might have a singularity at the origin. In fact, the ze-
roth order solution satisfying these boundary conditions reads

𝜓 (0) = 1 + a
r
. (17)

Here a is an integration constant which will appear in the ADM
energy as is clear, but there will be additional contributions to
the ADM energy coming form the spin and the linear momen-
tum. The constant a will also appear as the dominant term in the
location of the apparent horizon. So its physical meaning will be-
come transparent in the next section. On the right-hand side for
the next order, one has

𝜓−7 ∼ (𝜓 (0))−7 = r7

(r + a)7
, (18)
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yielding the equations

D̂iD̂
i𝜓p21 = − 9r3

16(r + a)7
(
1 + 2 sin2 𝜃 sin2 𝜙

)

−
9r2 c1

4(r + a)7
sin 𝜃 cos𝜙

(
1 + 3 sin2 𝜃 sin2 𝜙

)
, (19)

D̂iD̂
i𝜓p22 = − 9r3

16(r + a)7
(
1 + 2 sin2 𝜃 sin2 𝜙

)

+
9r2 c2

4(r + a)7
sin 𝜃 cos𝜙

(
1 + 3 sin2 𝜃 sin2 𝜙

)
, (20)

D̂iD̂
i𝜓p1p2 = 9r3

8(r + a)7
(
1 + 2 sin2 𝜃 sin2 𝜙

)

+
9r2(c1 − c2)
4(r + a)7

sin 𝜃 cos𝜙
(
1 + 3 sin2 𝜃 sin2 𝜙

)
, (21)

D̂iD̂
i𝜓 j21 = −9r

4(r + a)7
(sin2 𝜙 + cos2 𝜃 cos2 𝜙)

−
18c1

(r + a)7
sin 𝜃 cos3 𝜙(tan2 𝜙 + cos2 𝜃), (22)

D̂iD̂
i𝜓 j22 = −9r

4(r + a)7
(sin2 𝜙 + cos2 𝜃 cos2 𝜙)

+
18c2

(r + a)7
sin 𝜃 cos3 𝜙(tan2 𝜙 + cos2 𝜃), (23)

D̂iD̂
i𝜓 j1 j2 = 9r

2(r + a)7
(sin2 𝜙 + cos2 𝜃 cos2 𝜙)

+
18(c1 − c2)
(r + a)7

sin 𝜃 cos3 𝜙(tan2 𝜙 + cos2 𝜃), (24)

D̂iD̂
i𝜓p1 j1 = −9r2

4(r + a)7
cos 𝜃 −

27rc1
2(r + a)7

sin 𝜃 cos 𝜃 cos𝜙, (25)

D̂iD̂
i𝜓p2 j2 = −9r2

4(r + a)7
cos 𝜃 +

27rc2
2(r + a)7

sin 𝜃 cos 𝜃 cos𝜙, (26)

D̂iD̂
i𝜓p1 j2 = 9r2

4(r + a)7
cos 𝜃 +

9r(c1 − 2c2)
2(r + a)7

sin 𝜃 cos 𝜃 cos𝜙, (27)

D̂iD̂
i𝜓p2 j1 = 9r2

4(r + a)7
cos 𝜃 +

9r(2c1 − c2)
2(r + a)7

sin 𝜃 cos 𝜃 cos𝜙. (28)

Each equation, albeit being linear, is still a PDE; one can convert
these equations to decoupled ODEs with the help of the following

spherical harmonics:

Y0
0 (𝜃,𝜙) =

1√
4𝜋

, Y0
1 (𝜃,𝜙) =

√
3
4𝜋

cos 𝜃,

Y0
2 (𝜃,𝜙) =

√
5
16𝜋

(3 cos2 𝜃 − 1),

Y−1
1 (𝜃,𝜙) =

√
3
4𝜋

sin 𝜃 sin𝜙,

Y1
2 (𝜃,𝜙) =

√
15
4𝜋

sin 𝜃 cos 𝜃 cos𝜙,

Y1
1 (𝜃,𝜙) =

√
3
4𝜋

sin 𝜃 cos𝜙.

The ansatz for (19) is of the form:

𝜓p21 (r, 𝜃,𝜙) = 𝜓
p21
0 (r)

[
Y0
0 (𝜃,𝜙)

]2 + 𝜓p21
1 (r)

[
Y−1
1 (𝜃,𝜙)

]2
+c1𝜓

p21
2 (r)

[
Y1
1 (𝜃,𝜙)

]2 + c1𝜓
p21
3 (r)Y

1
1 (𝜃,𝜙)

[
Y−1
1 (𝜃,𝜙)

]2
.

(29)

As this structure shows, the spherical harmonics enter into the
picture in a rather non-trivial way, one has tomake careful choices
to decouple the radial and angular parts. We do not depict here
the solutions to the radial parts separately, as the expressions be-
come rather long. The solution to (19), obeying the boundary con-
ditions, for the ansatz (29), turns out to be

𝜓p21 (r, 𝜃,𝜙)

= −84a
6 + 378a5r + 653a4r2 + 514a3r3 + 142a2r4 − 35ar5 − 25r6

160ar2(a + r)5

+
21a log

(
a+r
a

)
40r3

−
c1 sin 𝜃 cos𝜙
80ar4(a + r)5

×
(
108a2(a + r)5 log

( a
a + r

)
+ r

(
108a6 + 486a5r + 846a4r2

+693a3r3 + 245a2r4 + 10ar5 − 16r6
))

+ sin2 𝜃 sin2 𝜙
160r3

×3

(
r
(
84a5 + 378a4r + 658a3r2 + 539a2r3 + 192ar4 + 15r5

)
(a + r)5

+84a log
( a
a + r

))
+
9c1 sin

3 𝜃 sin2 𝜙 cos𝜙
80r4(a + r)5

×
(
r
(
60a5 + 270a4r + 470a3r2 + 385a2r3 + 137ar4 + 10r5

)
+60a(a + r)5 log

( a
a + r

))
. (30)

𝜓p22 (r, 𝜃,𝜙) can be obtained from the above expression via the re-
placement c1 → −c2. So we do not depict it here. The solution to

Fortschr. Phys. 2023, 71, 2300080 2300080 (5 of 9) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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(21) is

𝜓p1p2 (r, 𝜃,𝜙)

= 84a6 + 378a5r + 653a4r2 + 514a3r3 + 142a2r4 − 35ar5 − 25r6

80ar2(a + r)5

−
21a log

(
a+r
a

)
20r3

+
(c1 − c2) sin 𝜃 cos𝜙

80ar4(a + r)5

×
(
108a2(a + r)5 log

( a
a + r

)
+ r

(
108a6 + 486a5r + 846a4r2

+693a3r3 + 245a2r4 + 10ar5 − 16r6
))

− sin2 𝜃 sin2 𝜙
80r3

×3

(
r
(
84a5 + 378a4r + 658a3r2 + 539a2r3 + 192ar4 + 15r5

)
(a + r)5

+84a log
( a
a + r

))
−
9(c1 − c2) sin

3 𝜃 sin2 𝜙 cos𝜙
160r4(a + r)5

×
(
r
(
60a5 + 270a4r + 470a3r2 + 385a2r3 + 137ar4 + 10r5

)
+60a(a + r)5 log

( a
a + r

))
. (31)

The ansatz for (22) is of the form:

𝜓 j21 (r, 𝜃,𝜙) = 𝜓
j21
0 (r)

[
Y0
0 (𝜃,𝜙)

]2 + 𝜓 j21
1 (r)

[
Y1
1 (𝜃,𝜙)

]2
+c1𝜓

j21
2 (r)

[
Y1
1 (𝜃,𝜙)

]
+ c1𝜓

j21
3 (r)

[
Y1
1 (𝜃,𝜙)

]3
, (32)

and the corresponding solution is;

𝜓 j21 (r, 𝜃,𝜙) = −a4 + 5a3r + 11a2r2 + 5ar3 + r4

40a3(a + r)5
+
sin 𝜃 cos𝜙 r c1
10a8(a + r)5

×
(
a(4a6 + 20a5r + 247a4r2 + 693a3r3 + 846a2r4

+486ar5 + 108r6) + 108r2(a + r)5(log r
a + r

)
)

− sin
2 𝜃 cos2 𝜙 3r2

40a(a + r)5
−
3 sin3 𝜃 cos3 𝜙 c1r

2

10a8(a + r)5

×
(
a(10a5 + 137a4r + 385a3r2 + 470a2r3

+270ar4 + 60r5) + 60r(a + r)5 log r
a + r

)
. (33)

Ansatzes for (23) and (24) are the same as (22) after the substitu-
tions c1 → −c2 and c1 → (c2 − c1), respectively. Hence we do not
depict them here.
The ansatz for (25) is of the form:

𝜓p1 j1 (r, 𝜃,𝜙) = 𝜓
p1 j1
0 (r)

[
Y0
0 (𝜃,𝜙)

]2 + 𝜓p1 j1
1 (r)Y0

1 (𝜃,𝜙)

+c1𝜓
p1 j1
2 (r)Y1

2 (𝜃,𝜙), (34)

and the corresponding solution is;

𝜓p1 j1 (r, 𝜃,𝜙)

=
r(a2 + 5ar + 10r2) cos 𝜃

80a(a + r)5
+
9c1r

2 sin 𝜃 cos 𝜃 cos𝜙
20a(a + r)5

. (35)

The ansatzes for (26), (27) and (28) are the same as (34) after the
change of coefficients c1 → −c2, c1 → (2c2 − c1)∕3 and c1 → (c2 −
2c3)∕3, respectively, and the corresponding solutions are:

𝜓p2 j2 (r, 𝜃,𝜙) =
r(a2 + 5ar + 10r2) cos 𝜃

80a(a + r)5

−
9c2r

2 sin 𝜃 cos 𝜃 cos𝜙
20a(a + r)5

, (36)

𝜓p1 j2 (r, 𝜃,𝜙) =
−r(a2 + 5ar + 10r2) cos 𝜃

80a(a + r)5

−
3(c1 − 2c2)r

2 sin 𝜃 cos 𝜃 cos𝜙
20a(a + r)5

, (37)

𝜓p2 j1 (r, 𝜃,𝜙) =
−r(a2 + 5ar + 10r2) cos 𝜃

80a(a + r)5

−
3(2c1 − c2)r

2 sin 𝜃 cos 𝜃 cos𝜙
20a(a + r)5

. (38)

Collecting all the pieces above and inserting them into (13),
one finds the conformal factor from which all the ensuing com-
putations will follow. But the explicit form is unwieldy. We have
used Mathematica to keep track of the computations and check
all the details. Let us show the expansion of the conformal factor
as a solution to the Hamiltonian constraint up to (1∕r3):

𝜓(r, 𝜃,𝜙) = 1 +
160a4 + 25a22

r + 4 2
r

160a3r

+
r

(
16r cos 𝜃 − 9ar(cos 2𝜃 + 7)

)
128ar2

+
sin 𝜃

(
64 cos𝜙

(
5a2r +  r

)
− 225a32

r sin 𝜃 cos 2𝜙
)

1600a3r2

+(1∕r3), (39)

where we have defined

r := p1 − p2,  := p1c1 + p2c2, r := j1 − j2

 := j1c1 + j2c2. (40)

To compute the ADM energy, we need the ( 1
r
) in (39), which

from (8) yields

EADM = 2a +
52

r

16a
+

 2
r

20a3
. (41)

Fortschr. Phys. 2023, 71, 2300080 2300080 (6 of 9) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 2. A schematic picture of the apparent horizon, the boundary of the
colored region. The colored region is a trapped region and the apparent
horizon is amarginally trapped surface. n𝜇 is timelike, s𝜇 is spacelike, while
k𝜇 and 𝓁𝜇 are lightlike. Lie-dragging the metric on the apparent horizon
along the outgoing null vector 𝓁 yields zero; and also derivative of the area
of the apparent horizon along 𝓁 gives zero.

For vanishing spin and vanishing linear momentum, it is clear
that the constant a is related to the total mass of the static space-
time. In the next section, we will write the ADM mass in terms
of the irreducible mass once we find the apparent horizon.

4. Finding the Apparent Horizon

The apparent horizon is a codimension two spacelike hypersur-
face (unlike the event horizon which is a codimension one null
hypersurface). Since it is discussed at length in the literature (see
refs. [26] and [23]), we shall only briefly recap the relevant equa-
tions. Assume now that (r, 𝜃,𝜙) are local coordinates on the ap-
parent horizon  , a subspace of Σ with the pull-back metric q𝜇𝜈
from the spacetimemetric. And si is a unit normal to the surface,
as shown in Figure 2. Then the apparent horizon equation reads

qij
(
𝜕isj −Σ Γk

ijsk − Kij

)
= 0. (42)

Furthermore, assume that the surface  can be parameterized as
a level set of a function Φ(r, 𝜃,𝜙) such that

Φ(r, 𝜃,𝜙) := r − h(𝜃,𝜙) = 0, (43)

with h being a smooth function. A rather tedious computation
yields the following exact equation for a conformally flat, maxi-
mally sliced hypersurface:

−𝛾𝜃𝜃𝜕2
𝜃
h − 𝛾𝜙𝜙𝜕2

𝜙
h − 1

2

(
(𝛾 rr)2𝜕r𝛾rr − 𝛾𝜃𝜃𝛾 rr𝜕r𝛾𝜃𝜃

−𝛾𝜙𝜙𝛾 rr𝜕r𝛾𝜙𝜙 + 𝜕𝜃h𝛾𝜙𝜙𝛾𝜃𝜃𝜕𝜃𝛾𝜙𝜙
)

+𝜆2
(
(𝛾𝜃𝜃)2(𝜕𝜃h)

2𝜕2
𝜃
h + (𝛾𝜙𝜙)2(𝜕𝜙h)

2𝜕2
𝜙
h + 2𝛾𝜙𝜙𝛾𝜃𝜃𝜕𝜙h𝜕𝜃h𝜕𝜃𝜕𝜙h

)

+𝜆
2

2

(
(𝛾 rr)3𝜕r𝛾rr + (𝛾𝜃𝜃)2𝛾 rr(𝜕𝜃h)

2𝜕r𝛾𝜃𝜃 + (𝛾𝜙𝜙)2𝛾 rr(𝜕𝜙h)
2𝜕r𝛾𝜙𝜙

−(𝜕𝜙h)2𝜕𝜃h(𝛾𝜙𝜙)2𝛾𝜃𝜃𝜕𝜃𝛾𝜙𝜙
)

+𝜆
(
(𝛾 rr)2Krr+(𝛾𝜃𝜃)2(𝜕𝜃h)2K𝜃𝜃+(𝛾𝜙𝜙)2(𝜕𝜙h)2K𝜙𝜙−2𝛾 rr𝛾𝜃𝜃𝜕𝜃hKr𝜃

−2𝛾 rr𝛾𝜙𝜙𝜕𝜙hKr𝜙 + 2𝛾𝜃𝜃𝛾𝜙𝜙𝜕𝜃h𝜕𝜙hK𝜃𝜙
)
= 0, (44)

where 𝜆 is given as

𝜆 =
(
𝛾 rr + 𝛾𝜃𝜃(𝜕𝜃h)2 + 𝛾𝜙𝜙(𝜕𝜙h)2

)−1∕2
. (45)

In principle, given the initial data, i.e. 𝛾ij and Kij, one can solve
(44) numerically. But we shall attempt a perturbative solution,
consistent with our approach so far. For this purpose, we need
the extrinsic curvature in the spherical coordinates. So we make
a coordinate transformation from the Cartesian coordinates to
the spherical coordinates. Then K̂ij transforms in to a spherical
tensor of which the non-vanishing components are

K̂rr =
3
r2
r sin 𝜃 sin𝜙 + 6

r3
 sin2 𝜃 sin𝜙 cos𝜙,

K̂r𝜃 = 3
2r

r cos 𝜃 sin𝜙 + 3
r2
r sin𝜙 + 12

r3
 sin 𝜃 sin𝜙 cos𝜙,

K̂r𝜙 = 3
r2
r sin 𝜃 cos𝜙 + 3

r2
 sin2 𝜃 + 3

r2
r sin 𝜃 cos 𝜃 cos𝜙

+12
r3

 sin2 𝜃 cos 𝜃 cos2 𝜙, (46)

where  etc. were defined in (40).
Following Christodoulou[27] the irreducible mass Mirr of the

black hole can be defined in terms of the area of a cross-section of
the event horizon as

Mirr :=
√

AEH

16𝜋
. (47)

For the non-stationary case that we are dealing with, instead of a
section of the event horizon, we can use the apparent horizon[25]

as a viable approximation, hence we have

Mirr :=
√

AAH

16𝜋
, (48)

where the exact area reads

AAH =
2𝜋

∫
0

d𝜙

𝜋

∫
0

d𝜃 sin 𝜃 𝜓4 (h + a)2

×

(
1 + 1

(h + a)2
(
𝜕𝜃h

)2 + 1
(h + a)2 sin2 𝜃

(
𝜕𝜙h

)2)1∕2

. (49)

To compute this at the order we are working, we need to solve (44)
up to first order in the parameters p1, p2, j1, j2; therefore plugging
the ansatz

h(𝜃,𝜙) = h0 + p1h
p1 + +p2hp2 + j1h

j1 + j2h
j2 + (p21, p22, j21, j22,…)

(50)

Fortschr. Phys. 2023, 71, 2300080 2300080 (7 of 9) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 2023, 8-9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300080 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

into (44), one arrives at

−𝜓4

r2

(
𝜕2
𝜃
h +

𝜕2
𝜙
h

sin2 𝜃
+ cot 𝜃𝜕𝜃h − 2r − 4r2

𝜕r𝜓

𝜓

)
K̂rr

−2r−2𝜕𝜃hK̂r𝜃 − 2r−2 sin2 𝜃𝜕𝜙hK̂r𝜙 = 0. (51)

Substituting (46) and the conformal factor derived in the previous
section, into (51) gives the following differential equations;

𝜕2
𝜃
hp1 + 1

sin2 𝜃
𝜕2
𝜙
hp1 + cot 𝜃𝜕𝜃h

p1 − hp1

− 3
16

sin 𝜃 sin𝜙 − 3
8a

c1 sin
2 𝜃 sin𝜙 cos𝜙 = 0,

𝜕2
𝜃
hp2 + 1

sin2 𝜃
𝜕2
𝜙
hp2 + cot 𝜃𝜕𝜃h

p2 − hp2

+ 3
16

sin 𝜃 sin𝜙 − 3
8a

c2 sin
2 𝜃 sin𝜙 cos𝜙 = 0,

𝜕2
𝜃
hj1 + 1

sin2 𝜃
𝜕2
𝜙
hj1 + cot 𝜃𝜕𝜃h

j1 − hj1 = 0, (52)

with j2 satisfying the same equation as the last one. At the zeroth
order, (p0, J0), one has the solution
h0 = a, (53)

which shows that a as the location of the apparent horizon at the
lowest order. The remaining equations are of the homogeneous
and non-homogeneous Helmholtz equations on the two sphere
(S2):

(
∇⃗2

S2 + k
)
f (𝜃,𝜙) = g(𝜃,𝜙), (54)

with the Laplacian on the sphere given as

∇⃗2
S2 := 𝜕2

𝜃
+ cot 𝜃𝜕𝜃 +

1
sin2 𝜃

𝜕2
𝜙
. (55)

In refs.[10] and [23], we described how this equation can be solved
via the Green’s function technique; here we do not repeat that
computation, instead just write the result: at this order the ap-
parent horizon is given by the solution

h(𝜃,𝜙) = a +
(p1 − p2)

16
sin 𝜃 sin𝜙 −

3(p1c1 + p2c2) sin
2 𝜃 sin𝜙 cos𝜙

56a
.

(56)

Using (56), the area of the apparent horizon can be calculated
from (49) to get

AAH = 64𝜋a2 + 4𝜋
(
p1 − p2

)2 + 11𝜋
5a2

(
j1 − j2

)2
. (57)

Therefore the irreducible mass from (48) is

Mirr = 2a +
(p1 − p2)

2

16a
+
11(j1 − j2)

2

320a3
. (58)

The EADM energy can be expressed in terms of the irreducible
mass as

EADM = Mirr +
(p1 − p2)

2

2Mirr
+
(j1 − j2)

2

8M3
irr

, (59)

which matches the result of ref. [27] at this order.

5. Conclusions and Discussions

Extending our earlier work,[10] in which we analytically, albeit
perturbatively, found a single boosted, rotating gravitating
system as an initial data for Einstein’s theory in a vacuum;
here we have studied binary black holes with total spin and
linear momentum orbiting around each other. We worked in
the Bowen-York formalism where the momentum constraints
decouple and admit exact solutions, while the Hamiltonian con-
straint, a nonlinear elliptic equation, is solved perturbatively. We
determined the conformal factor for small momenta and rotation
and for close separation of black holes. We have also determined
the shape of the apparent horizon covering both black holes in
close separation, as well as the conserved quantities, such as
energy, momentum, angular momentum and irreducible mass
associated with the solution. For an earlier work on close-limit
of binary black hole collisions and the associated radiation in the
context of Misner initial data,[28] see ref. [29] Our work is valid for
distances far away from the binary system, the analytical results
presented here can be used to check the numerical computations
for far distances. Numerical relativity results should match our
analytical results in this regime for the particular black hole
configurations described as in Figure 1. Our solution can be
criticized on the basis that numerical methods used for the
evolution equations are far superior to describe the merging
black holes even in the close proximity where our perturbative
scheme is insufficient. While we agree with this, we worked with
the constraint equations, and not the time evolution equations;
and also it is always good to have an analytical description of
the system even if that description is valid in some perturbative
regime such as we have here. For further work, one can start
with the exact Hamilton’s constraint (4) of which the right-hand
side is given by (7) and try to either solve in some approximation
or numerically for generic orientation and separation of black
holes. We have not been able to do that so far, but any further
improvement in that direction would be interesting.
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